Troponin C isoform composition determines differences in Sr(2+)-activation characteristics between rat diaphragm fibers.

نویسندگان

  • Brett O'Connell
  • D George Stephenson
  • Ronnie Blazev
  • Gabriela M M Stephenson
چکیده

Single fibers of rat diaphragm containing different naturally occurring combinations of myofibrillar protein isoforms were used to evaluate the contribution of troponin C (TnC) isoforms to fiber type-related differences with respect to sensitivity to Sr(2+) of the contractile system. Mechanically skinned fibers were studied for their isometric force vs. Sr(2+) concentration ([Sr(2+)]) relationships and then analyzed electrophoretically for myofibrillar protein isoform composition. Our data demonstrate that fiber-type differences in Sr(2+) dependence of contractile activation processes are primarily determined by the TnC isoform composition, with the slow isoform conferring on average a sevenfold greater sensitivity to Sr(2+) than the fast isoform. Moreover, the ratio of TnC isoforms determined functionally from the force-pSr (-log(10) [Sr(2+)]) curves is tightly (r(2) = 0.97) positively correlated with that estimated electrophoretically. Together, these results validate the use of Sr(2+) activation characteristics to distinguish fibers containing different proportions of fast and slow TnC isoforms and to study the mechanisms by which divalent cations activate the contractile apparatus. We also found that the functionally and electrophoretically determined ratios of TnC isoforms present in a fiber display similar sigmoidal relationships with the ratio of myosin heavy chain (MHC) isoform types expressed. These relationships 1) offer further insight in the functional and molecular expression of TnC in relation to the molecular expression of MHC isoform types and 2) may provide the basis for predicting sensitivity to Sr(2+), TnC, and MHC isoforms in pure and hybrid skeletal muscle fibers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHC isoform composition and Ca(2+)- or Sr(2+)-activation properties of rat skeletal muscle fibers.

Chemically skinned single fibers from adult rat skeletal muscles were used to test the hypothesis that, in mammalian muscle fibers, myosin heavy chain (MHC) isoform expression and Ca(2+)- or Sr(2+)-activation characteristics are only partly correlated. The fibers were first activated in Ca(2+)- or Sr(2+)-buffered solutions under near-physiological conditions, and then their MHC isoform composit...

متن کامل

Electrophoretic and functional identification of two troponin C isoforms in toad skeletal muscle fibers.

The differential sensitivity of frog twitch and slow-tonic fibers to Ca(2+) and Sr(2+) suggests that these two fiber types express different troponin C (TnC) isoforms. To date, only one TnC isoform from anurans (resembling the mammalian fast-twitch isoform) has been isolated and characterized. In this study, we examined the possibility that anuran striated muscle contains more than one TnC isof...

متن کامل

Force-calcium relationship depends on myosin heavy chain and troponin isoforms in rat diaphragm muscle fibers.

The present study examined Ca(2+) sensitivity of diaphragm muscle (Dia(m)) fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that Dia(m) fibers expressing the MHC(slow) isoform have greater Ca(2+) sensitivity than fibers expressing fast MHC isoforms and that this fiber-type difference in Ca(2+) sensitivity reflects the isoform composition of the troponin (Tn) comple...

متن کامل

Expression and functional behavior of troponin C in soleus muscle fibers of rat after hindlimb unloading.

Troponin C (TnC) plays a key role in the regulation of muscle contraction, thereby modulating the Ca(2+)-activation characteristics of skinned muscle fibers. This study was performed to assess the effects of a 15-day hindlimb unloading (HU) period on TnC expression and its functional behavior in the slow postural muscles of the rat. We investigated the TnC isoform expression in whole soleus mus...

متن کامل

Maximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers.

In the present study, myosin heavy chain (MHC) content per half sarcomere, an estimate of the number of cross bridges available for force generation, was determined in rat diaphragm muscle (Dia(m)) fibers expressing different MHC isoforms. We hypothesize that fiber-type differences in maximum specific force [force per cross-sectional area (CSA)] reflect the number of cross bridges present per C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 287 1  شماره 

صفحات  -

تاریخ انتشار 2004